5G基站和4G基站如何“搞基”?

2018-01-18 09:52:53来源:网优雇佣军 热度:
前两天,有网友留言问5G基站和4G基站如何协同工作,今天我们就来探讨探讨这个问题——

  5G和4G基站如何“搞基”?

 

  众所周知,3GPP最新发布的5G NSA标准采用LTE与5G NR新空口双连接(LTE-NR DC)的方式,以4G作为控制面的锚点,4G基站(eNB)为主站,5G基站(gNB)为从站,并沿用4G核心网。

  关键就得从这个“双连接”说起。

  3GPP R12版本中提出了LTE双连接(Dual Connectivity)技术,它类似于R10版本提出的LTE-A载波聚合技术,但两者在本质上有不同之处:

  ①LTE双连接下数据流在PDCP层分离和合并,随后将用户数据流通过多个基站同时传送给用户,而载波聚合下数据流在MAC层分离和合并。

  

22.jpg

 

  ②LTE双连接是发生在不同站点之间的聚合(通常为一个宏基站和一个微基站,两者间通过X2接口相连)。

  

33.jpg

 

  到了5G时代,由于5G NR是新的无线技术,LTE-NR双连接就是要实现不同无线技术之间的聚合,它与LTE双连接必然是有区别的。

  区别在哪呢?主要从三个方面进行了功能扩展。

  1 承载分离扩展

  44.jpg

 

  载波聚合引入了MCG(Master Cell Group)和 SCG(Secondary Cell Group)概念,即主从基站分别形成的服务小区簇。在LTE双连接下,R12规定由MCG分离承载,简单点说,就是主站是分离点,下行数据流或者从主站直接传送到手机,或者由主站通过X2接口传送到从站,再传送到手机。

  对于5G早期部署,LTE-NR双连接模式下,LTE eNB(4G基站)为主站,gNB(5G基站)为从站,但传统LTE双连接难以满足这种部署方式,主要原因是:

  由于5G NR的带宽更大,这就要求支持MCG分离承载的4G基站具备更强的处理和缓冲能力。

  因此,为了避免4G基站处理能力的瓶颈,最大限度地减少原来的4G基站升级,尽可能地降低设备研发和建网成本,LTE-NR双连接另辟蹊径,规定也可由SCG分离承载,即下行数据流即可从5G从站直接传送到手机,也可由5G从站传送到4G主站,再传送到手机。

  

55.jpg

 

  ▲5G NR非独立组网选项3x

  2 独立RRC连接

66.jpg  

 

  在LTE双连接中,主站和手机之间建立RRC协议,即RRC消息仅在主站和手机间传送。但主站和从站各自执行无线资源管理(RRM),RRM功能在主站和从站之间通过X2接口交互协同,比如从站分配资源后通过X2接口与主站交互,再由主站将包含从站资源配置的RRC消息发送给手机。

  简单的说,手机只能看到唯一来自主站的RRC消息,并且只会回复给主站。

  现在,在LTE-NR双连接中,不仅主站和从站各自执行RRM,而且,RRC协议也独立建立于主站和从站与手机之间。

  也就是说,从站不再通过X2接口与主站进行RRM交互协同,而是通过RRC消息直接从从站传送到手机。

  另外,独立的RRC连接也意味着主站和从站可独立设置RRC测量。

  不过,从站不能释放手机的RRC连接,也不能使手机迁移到RRC_IDLE状态,这是因为UE RRC连接和上下文依然由主站存储和管理。

  在这里有必要补充一下,相较于4G LTE只有RRC IDLE和RRC CONNECTED两种RRC状态,5G NR引入了一个新状态——RRC INACTIVE。

  

77.jpg

 

  新引入RRC INACTIVE状态的目的是降低连接延迟、减少信令开销和功耗,以适应未来各种物联网场景。

  在RRC INACTIVE状态下,RRC和NAS上下文仍部分保留在终端、基站和核心网中,此时终端状态几乎与RRC_IDLE相同,因此可更省电,同时,还可快速从RRC INACTIVE状态转移到RRC CONNECTED状态,减少信令数量。

  3 RRC分集

  88.jpg

 

 

  如上所述,在传统LTE双连接下,仅从主站发送RRC消息,这样做不适用于LTE-NR双连接。

  由于5G NR频段更高,早期的5G基站可能主要是以微蜂窝的形式补盲和补热点,在这种情况下,手机与5G基站的距离比4G基站更近,这意味着,当5G从站发送RRC消息时,手机接收成功的可能性更高。

  值得一提的是,为了进一步提升信令传输的可靠性,主站的RRC消息可以被复制,并通过主站和从站向手机发送相同的消息,以RRC分集的方式提升手机接收RRC消息的成功率。

  此外,除了RRC消息重复发送,在用户面,为了应对5G超可靠和低延迟通信(URLLC)场景,在PDCP层上的重复传输方案也在讨论之中。

  这种方案以在多个无线链路上传输相同的数据的方式,来提升通信的可靠性。

  好了,总算简单介绍完4G和5G基站的“搞基”方式了。

责任编辑:饶军

为您推荐

2.5G移动网络的流媒体技术发展分析

一、现状分析在手机增值业务市场,短信、彩信、彩e等虽然有了交互、24小时不间断等不同于传统媒体的特点,但传输的主要是静态为主的图像和文字内容,影响了其媒体作用的充分发挥。随着最终用户需求的提升,如何更好地融合声音、文字、图像,支持多媒体功能,既发挥短信方便、快捷的优点,又可以弥补短信形式单调的不足,真正使移动用户”振聋发聩",进入一个有声有色、逼真形象的美丽世界成为移动运营商普遍关心的话题。流媒体(StreamingMedia)的出现改变了这种状况。它不需要下载整个文件就可以在向播放器传输的过程中一边下载一边播放,实现了在网上点播或观看电影、电视的梦想。现在,以”流”的形式进行数字媒体的传送,

凯钰光纤通讯IC迅速朝4.25Gbps大跃进

云端运算所引领的商机无限,各种平台应用大量出炉,因而对高频宽的需求迫切;符合高频宽需求的被动光网路(PON)解决方案因此备受重视,进而带动整体光纤宽频市场的蓬勃发展,包括:光纤到户(Fiber-To-The-Home,FTTH)、光纤到街边(Fiber-To-the-Curb,FTTC),光纤到楼(Fiber-To-The-Building、FTTB)等。凯钰科技多年来致力于开发高频宽光纤通讯类比IC,发挥其最擅长之光纤通讯混合讯号技术,持续开发出光通讯收发模组应用所须之限幅放大器、雷射二极体驱动器与整合型GPONIC等。由于光纤通讯市场之技术进入门槛甚高,凯钰科技算是全球少数几家能够开发光通

eSilicon 与 MIPS 宣布28 纳米下1.5GHz处理器集群

尊敬的媒体朋友:最大的独立半导体价值链制造者(valuechainproducer,VCP)eSilicon公司,以及业界标准处理器架构与内核的领导厂商MIPS科技公司共同宣布,已采用GLOBALFOUNDRIES的先进低功率28纳米SLP制程技术,在GLOBALFOUNDRIES位于德勒斯登(Dresden)的Fab1进行高性能、三路微处理器集群的流片,预计明年初正式出货。SoC设计已可立即开始。MIPS科技提供以其先进MIPS32®1074Kf™同步处理系统(C

1.3Gbps!博通发布全球首款5G Wi-Fi SoC控制器

博通今天宣布推出全球第一款基于IEEE802.11ac标准的5GWi-FiSoC芯片,型号为“BCM43460”,最高数据传输率达1.3Gbps,可满足企业、无线云网络、电信运营商的Gbps级别访问需求。博通宣称,该芯片可让无线设备的传输速度达到目前流行标准802.11n的三倍,能效更是能够超过六倍。BCM43460单芯片完全整合MAC、PHY、Radio等所有模块,支持802.11a