搜索历史
热搜词
清华微电子所团队提出AI芯片的存储优化新方法
芯系清华 | 2018-06-12 10:47
6月2日 ~ 6日,第45届国际计算机体系结构大会(International Symposium on Computer Architecture,简称ISCA)在美国洛杉矶召开。清华大学微电子所博士生涂锋斌在会上做了题为《RANA:考虑eDRAM刷新优化的神经网络加速框架》(RANA: Towards Efficient Neural Acceleration with Refresh-Optimized Embedded DRAM)的报告。该研究成果大幅提升了人工智能计算芯片的能量效率。
 
 
ISCA是计算机体系结构领域的顶级会议。本次大会共收到378篇投稿,收录64篇论文,录用率仅为16.9%。本文是今年中国唯一被收录的署名第一完成单位的论文。尹首一副教授为本文通讯作者,论文合作者还包括清华大学微电子所魏少军教授和刘雷波教授等。
 
 
随着人工智能应用中神经网络规模的不断增大,计算芯片的大量片外访存会造成巨大的系统能耗,因此存储优化是人工智能计算芯片设计中必须解决的一个核心问题。可重构研究团队提出一种面向神经网络的新型加速框架:数据生存时间感知的神经网络加速框架(RANA)。RANA框架采用了三个层次的优化技术:数据生存时间感知的训练方法,混合计算模式和支持刷新优化的eDRAM存储器,分别从训练、调度和架构三个层面优化整体系统能耗。实验结果显示,RANA框架可以消除99.7%的eDRAM刷新能耗开销,而性能和精度损失可以忽略不计。相比于传统的采用SRAM的人工智能计算芯片,使用RANA框架的基于eDRAM的计算芯片在面积开销相同的情况下可以减少41.7%的片外访存和66.2%的系统能耗,使人工智能系统的能量效率获得大幅提高。
 
可重构计算团队近年来基于可重构架构设计了Thinker系列人工智能计算芯片(Thinker I,Thinker II,Thinker S),受到学术界和工业界的广泛关注。可重构计算团队此次研究成果,从存储优化和软硬件协同设计的角度大幅提升了芯片能量效率, 为人工智能计算芯片的架构演进开拓了新方向。
阅读 参与讨论 评论(0)

拾光同频,金彩纷呈:虹领金电视十周年,与千万家庭共赴新程
 12月26日
拾光同频,金彩纷呈:虹领金电视十周年,与千万家庭共赴新程
祝贺!长虹第一台彩色电视机入驻中国国家博物馆
 12月22日
祝贺!长虹第一台彩色电视机入驻中国国家博物馆
百视通携AI+创新成果亮相2025数智科技生态大会 共筑数智新视界
 12月07日
百视通携AI+创新成果亮相2025数智科技生态大会 共筑数智新视界
2025新媒股份出品精品剧集战报
 12月07日
2025新媒股份出品精品剧集战报
新媒股份投资短剧《龙王令之妃卿莫属》腾讯视频热播
 12月07日
新媒股份投资短剧《龙王令之妃卿莫属》腾讯视频热播